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Abstract-A mixed convection boundary layer on a horizontal plate for uniform wall temperature/uniform 
heat flux is investigated using a computer extension of the perturbation series. The first 17 terms for the 
uniform wall temperature case and the first ten terms for the uniform heat flux case are computed for a 
Prandtl number g = 0.72. The direct expansion is transformed by a Euler transform and other techniques. 
The results for buoyancy aiding or opposing the main flow are presented. The present work predicts the 
result to two digit accuracy for the entire domain of the streamwise coordinate. For uniform wall tempera- 
ture, the maximum error is 5.983% for skin friction and 1.072% for heat transfer. For uniform heat flux, 

the maximum error is 6.9% for skin friction and 1.9% for wall temperature. 

1. INTRODUCTION 

IN THE mixed convection on a horizontal plate, the 
tangential component of buoyancy gives rise to a 
hydrostatic pressure distribution across the boundary 
layer which modifies the forced convection boundary 
layer. As the boundary layer develops, the hydrostatic 
pressure at the plate surface also increases with 
increasing distance from the leading edge. The buoy- 
ancy force can either aid or oppose the development 
of the forced convection boundary layer depending 
on whether the induced pressure gradient within the 
boundary layer is favourable or adverse. More 
specifically, for an upward facing heated horizontal 
plate the density near the plate is less than the ambient 
density, the hydrostatic pressure at the surface 
decreases as the distance increases from the leading 
edge giving rise to a negative pressure gradient which 
accelerates the flow that results in the aiding flow 
situation. Likewise, above a cool horizontal plate there 
is an adverse pressure gradient. As the adverse pres- 
sure gradient is due to buoyancy, this results in an 
opposing flow situation. In the later situation if the 
buoyancy effects are stronger, the opposition of the 
forced and free convection effects leads to separation 
of the flow. The characteristics of a mixed convection 
boundary layer depends on the velocity of the forced 
stream and the thermal conditions at the wall, which 
later can be either a prescribed wall temperature or 
prescribed heat flux at the wall. 

The mixed convection on the horizontal surface due 
to a uniform oncoming stream has been studied by 
many workers. For buoyancy aiding flows, the results 
are well documented but in opposing flow situations, 

the investigations are largely incomplete. Mori [I] 
considered the weakly buoyant flows by expanding 
the variables in terms of a direct coordinate expansion 
valid in a region near the leading edge of the plate. The 
numerical solutions for the first-order perturbations 
were reported for a Prandtl number of 0 = 0.72. Spar- 
row and Minkowycz [2] have corrected a minor sign 
error in the analysis of ref. [I] and presented numerical 
solutions for Prandtl numbers, c = 0.01, 0.7 and 10. 
A perturbation series in terms of the distance from 
the leading edge apply as such to small buoyancy 
effects [2-51. Further, Hieber [5] also studied the 
strongly buoyant flows in terms of an inverse coor- 
dinate expansion and the solutions to the first three 
terms in the inverse expansion were reported for a 
Prandtl number of e = 0.72. The two expansions, 
direct and inverse, do not describe the entire mixed 
convection domain and fail in a domain where mixed 
convection effects are moderate. For limiting Prandtl 
numbers, the solutions of the equations for direct 
and inverse coordinate expansions were reported by 
Hieber [5] and Lea1 [6]. Approximate solutions of the 
modified boundary layer equations were obtained by 
Martynenko and Sokovishin [7] using an integral 
method similar to that of Karman-Pohlhausen. Chen 
et al. [8] and Mucoglu and Chen [9] have studied 
the problem by local similarity and related methods. 
Experimental results were reported by Wang [lo]. The 
numerical solutions were reported by Ramachandran 
et al. [I I]. Also, a vortex instability of the fluid flow 
heated from below or cooled from above was studied 
by Wang [IO] and Moutsoglou et al. [12]. Reference 
[ 131 considered the Navier-Stokes equations by 
employing the method of series truncation. The 
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numerical solutions to first truncated equations have 
been reported for various Reynolds and Grashof 
numbers. 

The mixed convection probtem for a prescribed 
heat flux at the wall has been studied by Mucoglu 
and Chen [9] and Schneider and Wasel 1141. The free 
convection asymptote has been studied in ref. [ 151 by 
employing boundary conditions at the wall implicitly 
and in ref. [16] explicitly. In particular self-similar 
solutions have been studied by Schneider [17] for a 
wall temperature prescribed as an inverse square root 
of the distance from the leading edge. 

Recently, Raju et al. [ 181 and Schneider and Wasel 
[ 141 have studied the mixed convection on a horizontal 
plate by integrating the boundary layer equations by 
finite difference schemes. The cases of prescribed wall 
temperature and prescribed heat flux are considered. 
Raju et nl. [ 181 presented a formulation (see also ref. 
[19]) where the entire mixed convection domain has 
been studied through a single formulation resulting in 
the smooth transition from one convection limit to 
the other. They provided the solutions in the aiding 
and opposing flow situations. For the opposing flow 
situation velocity and temperature profiles are dis- 
played graphically but shear stress and heat transfer 
distribution along the plate are not given. Schneider 
and Wasel [14] describe the solutions in the adverse 
ffow domain where streamwise gradient and heat 
transfer approach infinity. They attribute this infinite 
behaviour to the failure of the boundary layer equa- 
tions. In a related problem of similar solutions for 
mixed convection on a horizontal plate ref. [20] has 
shown that the solutions are dual with a turning point 
where the shear stress is still finite. This conclusion 
was also supported from the solutions of de Hoog ef 
al. [21] and the work of Raju et al. 1181. 

The present work deals with the extension of a 
direct series to estimate several higher order terms for 
the two cases of prescribed uniform wall temperature 
and uniform heat flux at the wall. The first 17 terms 
for the uniform wall temperature case and ten terms 
for the uniform heat Aux case have been obtained. It 
is shown that the results of the direct series expansions 
when transformed by the Euler transformation and 
other techniques predict results correct to two decimal 
places even in the asymptotic case of strongly buoyant 
flows. 

2. EQUATIONS OF MOTION 

The boundary layer equations for mixed convection 
flow over a horizontal semi-infinite flat plate under the 
Boussinesq approximation representing conse~ation 
of mass, momentum and energy are 

!?+$=o (1) 

au ati _ _tdp+,!?? 
*ax+“&- p dx ay” (2) 

(4) 

The boundary conditions are 

u = 0, 
aT 

T= T,(x) or ~~- = - $ at y= 0 
a.r 

(5a,b) 

u-+U,, T-+T, as y-rco. (5C) 

Here x is the coordinate along the plate measured 
from the leading edge and y normal to it. u and u 
are velocity components in the x- and J’-directions, 
respectively. U, is the constant uniform velocity of 
the free stream and T, the temperature of the free 
stream. An integration of energy equation (4) over a 
large control volume enclosing the leading edge gives 
the total heat flux Q as 

Q=P~, m 
s 

u(T- Tw) dy. (6) 
0 

3. ANALYSIS 

3.1. Uiziform wall temperature case 
In the region near the leading edge of the plate, the 

boundary layer is mainly governed by forced con- 
vection flow and the buoyancy effects can be regarded 
as perturbations. The appropriate variables are there- 
fore Blasius variables defined by 

$ = fvu,~)“~fK rl), T- 7-e = AhTot& r), 

P = ~u*G(~,~~, AT= T,,,-T,. (7) 

The variables 5 and n are defined by 

where Gr, and Re, are local Grashof and Reynolds 
number, respectively, defined by 

Gr 

x 
_ gWw-Tm)x3 

V2 
, Re, =gz, 

V 
@b) 

The stream function, JI, is defined as 

w 
lJ =G- 

and v = -‘y. 
ax 

Substituting transformations (7)-(9) into boundary 
layer equations (l)-(4) we obtain the following non- 
similar equations : 

f”‘+ ifs”+ :r/G’ = :<(f’f;--fs.f”+Gc) (10) 

G’= +<0 (11) 

(12) 
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Boundary conditions (5a) and (5~) become 

f(5,O) = f’(5,O) = e(L 0) - 1 = 0 (13a) 

f’(<, co) - 1 = f?(<, co) = 0. (13b) 

The global heat flux condition (6) gives 

Q = W,AT&k,x)) 0m f’edq. 
I 

(14) 

The positive and negative sign with the buoyancy 
term in equation (11) represents buoyancy aiding and 
opposing the main flow. 

For weakly buoyant flows, 4 is small and the vari- 
ables can be expanded in power series as 

f(LV) = f (+r)“f,(rl) 
n=O 

G(5, rl) = i: (+ 5)“Wrl) 
n=ll 

(15a-c) 

Substituting expansions (15) in equations (lo)-( 12) 
and equating various powers of 5 we obtain the equa- 
tions for successive approximations. The equations 
for leading order (n = 0) are 

so”‘+ if,&” = 0, G; = 0 (16a,b) 

l$~+:foo; = 0 (17) 

fO(0) = f;(O) = e,(O) - 1 

= fq”0)-i = e,(co) = 0. (18) 

Global heat flux condition (14) gives 

Q = @Cp&/(vU,x)) 0=’ fo’e, d?. 
s 

(19) 

Equations (16) and (17) are not coupled and the 
momentum equation is the well-known Blasius equa- 
tion. The equations for the next highest order per- 
turbation (fn, B,) for n > 1 can be expressed in terms 
of recurrence relations as 

= iI:r [rf~-,f;-(r+l)frfnll,l (20) 

G:, = en_, (21) 

(22) 

The boundary conditions for n > I are 

fn(0) = f,(O) = e,(O) = f;(m) = en(co) = 0 (23) 

and integral heat flux condition for n > 1 is 

m 
s( 

f,e,+ f/e,, + “i’ f:e,_, dq = 0. (24) 
!I I= I ) 

Equations (21) and (22) are decoupled by virtue of 
equation (21) and can be solved successively. 

3.2. Uniform heatflux case 
In this case, the appropriate similarity trans- 

formations in terms of forced convection variables are 
defined by 

$ = (vV,x)“*f(&q), T-TT, =$ “*Q&q) 

where 

(25) 

l/Z 
P=PU*G(LV), V=Y (26) 

(27) 

Based on equations (25)-(27), boundary layer equa- 
tions (l)-(4) become 

f”‘+ffS”+~~G’= &f#-ftf”+Gr) (28) 

G’ = k?e (29) 

~e~~+ife’-+f’e= Qf’e,-f,e’). (30) 

The boundary conditions are 

f (t,o) = fyF,o) = eyt,o)+ I = 0, 

f yt, CO) - i = e(F, a) = 0 (310) 

subject to the integral heat flux condition 

(32) 

The positive and negative sign in equation (29) is 
indicative of buoyancy aiding and opposing flow situ- 
ations. 

For weakly buoyant flows, t is small and the vari- 
ables in equations (28)-(30) can be expanded in 
powers of t in a manner similar to equations (15) and 
substituting these expansions into equations (28)-(30) 
and equating various powers of& we obtain the equa- 
tions for successive approximations. The equations 
for the leading order (n = 0) approximations for 
momentum and pressure are the same as equations 
(16a) and (16b) and the energy equation is given by 

ie;y+ ffOe;- :f;e, = 0 

h(o) = f;(o) = e;(o) + i = 0, 

f;(m) - I = e,(a) = 0. 

(33) 

(340) 
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Global heat flux condition (32) gives 

The higher order approximations for n > 1 are ex- 
pressed by recursive relations as 

n--l 

,= 1 

G; = en_, (37) 

The boundary conditions for n > 1 are 

f”(o) = f;(o) = e;(o) = f;(c0) = e,(a) = 0 (39) 

and the integral heat flux condition for n > 1 is the 
same as that given by equation (24). 

4. RESULTS AND DISCUSSIONS 

The calculations of higher order perturbation 
approximations in recurrence relations (20)-(24) for 
small r and equations (36)-(39) together with the 
integral heat flux condition for small z are pro- 
grammed as nested ‘DO’ loops. 

4.1. Uniform wall temperature case 
The results for skin friction and heat transfer rate 

are given by 

f”(L0) = 5 a,( f 5)” 
n=cl 

(40a) 

(4Ob) 

where the coefficients a,, b, are given in Table 1. 
The positive and negative sign with l corresponds 

to favourable and adverse buoyancy with respect to 
the oncoming stream. Figure 1 displays Domb-Sykes 
[22] plots, i.e. ratios an/a,_ I or b,/b,_, against l/n. 
The extrapolation to l/n = 0 yields an estimate of the 
radius of convergence 1 to 1. The Domb-Sykes plots of 
series (40) shown in Fig. 1 do not appear to have 
settled down and it is not easy to extrapolate the 
points to get the radius of convergence. However, 
the turning point studied earlier can be regarded as 
representative of the nearest singularity. We adopt 
t,, = 0.057, as it is well known that a slight variation 
in the value of to does not affect much the results of 
the Euler transformation (see Appendix A of ref. [27]). 

For buoyancy aiding flow situations, the nearest 
singularity on the negative real axis in the complex c- 
plane, at 5 = - co can be mapped away to infinity by 
the Euler transformation 

5 
Z=---- 

t-t50 
(41) 

where to is the radius of convergence. 
As l+ co, f”({,O) - lys and tI’({,O) - 51/5, 

extracting the factors t315 and L$“’ from series (40a) 
and (40b), respectively, and recasting the series in 
terms of variable Z defined by equation (41), we have 

<-3’5f”(& 0) = z A”Z”- 3/5 
(W 

n=O 

(42b) 

Coefficients A, and B, of the transformed series (42) 
are given in Table 1. Series (42) are hopefully con- 

Table 1. Coefficients in the series for skin friction and heat transfer for mixed convection on a horizontal 
plate with uniform wall temperature : a,, b,, low 5 series (40) : A,, B., Eulerized series (42) 

II 
Skin friction 

A, b, 

Heat transfer 

B” 

0 
1 
2 
3 
4 
5 
6 

8 
9 

10 
11 
12 
13 
14 
15 
16 

0.332057357E+OO O.l85220146B+01 -0.295635290E+OO -0.524301752E+OLl 
0.169711945E+01 -0S71732799E+OO -0.355730463E+OO 0.689002473E-01 

-0.499843675E+Ol -0,970145064E-01 O.l58582043E+Ol 0.223135857E-01 
0.357306689Ef02 -0.425486865E-01 -O.l22196806E+02 O.l17093884E-01 

-0.337330268E+03 -0.248289643E-01 O.l18215763E+03 0.745357242E-02 
0.368597704E+04 -O.l66257151E-01 -O.l30260244E+O4 0.526725798E-02 

-0.442052844E+05 -O.l20742679E-01 O.l56493787E+05 0.397409451E-02 
0.566285662Ef06 -0.925165160E-02 -0.200199785E+06 0.313579508E-02 

-0,762691768E+07 -0.736427483E-02 0.268838190E+07 0,255622241E-02 
O.l06889482E+09 -0.603235263E-02 -0.375359582E+OS 0,213600297E-02 

-0.154752459B+ 10 -0.505414832E-02 0.541229348E+09 O.l82003704B-02 
0.230446382E+ 11 -0.431090527E-02 -0.802455605E+ 10 0.157535368E-02 

-0.351496882Ef 12 -0.371820982E-02 O.l21867303E+ 12 0.138020602E - 02 
0.547711842E+ 13 -0.319018255E-02 -O.l89076999E+ 13 0,121736515E-02 

-O.S69853463E+ 14 -0,260041362E-02 0.299018215E+ 14 0.106843086E - 02 
0,140552127E+ 16 -O.l72830028E-02 -0.481154558E+ 15 0.907266502E - 03 

-0.230726465E+ 17 -0,179503953E-03 0.786715016E+ 16 0,691037964E-03 
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an-l 
bn -8.0 
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-20.0 
0 

o Skin-Friction 

x hat Tranrfor 

0 

* 

0 

I I I I 

0.2 0.4 0.6 0.0 1.0 

i/n 
FIG. 1. The Domb-Sykes plots for skin friction and heat transfer series (45) for mixed convection on a 

horizontal flat plate with constant wail temperature: 0, skin friction; *, heat transfer. 

vergent for all values of 2 from 2 = 0 to 1, provided 
there is no other singularity. The last partial sums of 
series (42) at 2 = 1 yield the value for skin friction, 
r-3’5f”([, 0) = 1.043946, and for heat transfer rate 
at the wall, r-‘/‘0’([,0) = -0.388196, whereas the 
corresponding exact results of Rotem and Classen [23] 
and Hieber [5] obtained from the study of strongly 
buoyant flows (c + co) for skin friction and heat 
transfer, respectively, are 0.97840 and -0.35741. This 

shows that the last partial sums of transformed series 
(42) overestimate the skin friction by 6.69% and heat 
transfer by 8.61%. 

The convergence of transformed series (42) can 
further be improved by completing series (42) from 
the analysis of the remainder. The remainder can be 
adopted from the characteristics of the Domb-Sykes 
plots : the inverse ratios An/A,_, or BJB,_ 1 against 
I/n, displayed in Fig. 2. A line with slope 215 and 

& 
Bn 
Bn-I 

-0.4 - 
I I I I I I I I I 

0 0.2 0.4 0.6 0.6 

I/n 

1 

FIG. 2. The Domb-Sykes plots for Eulerized series (48) for skin friction and heat transfer for mixed 
convection on a horizontal plate with constant wall temperature : 0, skin friction ; *, heat transfer. 
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Table 2. Coefficients in the series for skin friction and heat 
transfer for mixed convection on a horizontal plate with 
uniform wall temperature : A,, IS,, completed Eulerized series 

(43) 

n 

-1 
0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 

Skin friction Heat transfer 

A,* B,* 

0.318410446E-01 
O.l82036041E+Ol 

-0S58996381EtOO 
-0,931935810E-01 
-0.405108596E-01 
-0,235043768E-01 
-O.l56720121E-01 
-0,113430956E-01 
-O.S66671378E-02 
-0.688170113E-02 
-0,562484595E-02 
-0.470369257E-02 
-0.400505298E-02 
- 0.34480403OE - 02 
-0.294910821E-02 
-0,23834467IE-02 
-O.l53158361E-02 

-O.l22578752E+OO 
-0.401722999E+OO 

O.l98687454E-01 
0.760413530E-02 
0.386434821E-02 
0.235429631E-02 
O.l59577918E-02 
O.l15929410E-02 
0.883954760E-03 
0.698454148E-03 
0,567220883E-03 
0.470884446E -03 
0,397911417E-03 
0.340132021E-03 
0.289299121E-03 
0,233171434E-03 
0.149964623E - 03 

intercept unity is also displayed in the same figure. 
The figure shows that the line is in agreement except 
for a few points for large n. Therefore, the remainder 
can be taken proportional to (1-Z)“’ and the con- 
stant of proportionality is determined by equating the 
17 terms. On completing, the transformed series (42) 

leads to 

t-“‘f”(&O) = z- 3’5 
[ 

A?,(l-Z)2’5+ 2 A,*Z” 
n=O 1 

(434 
l-“%‘(~,o) = z-“5 

[ 

B*1(l-Z)2’5 + ; B,*Z” 
II=0 1 

(43b) 

Coefficients A,* and B,* of the completed transformed 
series (43) are given in Table 2, which are much 
reduced in comparison to the original coefficients A, 
and B, of transformed series (42). The last partial 
sums of the completed transformed series (43) for 
Z = 1 yield the value of the skin friction and heat 
transfer at the wall as lm3/5f”(& 0) = 1.03694 and 
5-“‘0’(5,0) = -0.361245. When compared to exact 
results, this shows that the results obtained from the 
completed transformed series (43) at Z = 1 (5 + 00) 
underestimate the skin friction by 5.98% and heat 
transfer at the wall by 1.07%. 

The results for skin friction and heat transfer at the 
wall based on the completed transformed series (43) 
are displayed in Figs. 3 and 4 against r. The asymp- 
totes for small and large 5 are also displayed in the 
respective figures. Figures 3 and 4 show that the large 
5 asymptote for skin friction is reliable when 5 > 100 
and for heat transfer when 5 > 1000. 

When the buoyancy opposes the main stream, series 
(40) are of limited interest. As the nature and location 

FIG. 3. Favourable case : the comparison of skin friction for mixed convection on a horizontal flat plate 
with constant wall temperature : C + E, completed transformed series (49a) ; A, asymptotes for small and 

large values of <. 
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0.6 - 

ecGo> 

0.4 - 

0.2 

t 

FIG. 4. Favourable case : the comparison of heat transfer for mixed convection on a horizontal flat plate 
with constant wall temperature : C + E, completed transformed series (49b) ; A, asymptotes for small and 

large values of 5. 

of the nearest singularity is not known, it is not pos- 
sible to improve the series by the method of sub- 
traction of singularities. Guided by the earlier works 
on the subject [20, 211, dual solutions are expected. A 
good insight into the structure of the dual solutions 
can hopefully be gained by inverting series (40) [24]. 
The method of inverting the series is described as 

follows. 
For a given series 

y = xi+’ f U”x” 
n=cl 

its inversion is given by 

where coefficients /3, are given by [26] 

(46) 

Using the above, series (40) yields 

(474 

W’b) 

where f” = f”(<, 0), 0’ = (I’(& 0) and the coefficients 
c, and d, are given in Table 3. The results for skin 
friction and heat transfer are displayed against 5, the 
mixed convection parameter in Fig. 5 show the dual 

solutions and associated turning point. The skin fric- 
tion and heat transfer decrease with increasing 5 until 
the turning point is approached. The results for skin 
friction show that the turning point is around 
to = 0.057 whereas those for heat transfer show a 
slightly smaller value. The slight difference in the 
location of the turning point is due to different rates 
of convergence of the two series. Better solutions 
around the turning point can be obtained from an 
asymptotic analysis in the neighbourhood of the turn- 
ing point or from solutions of full partial differential 

Table 3. Coefficients in the inverted series (47) for skin fric- 
tion and heat transfer for mixed convection on a horizontal 

plate with uniform wall temperature 

n 

Skin friction 
c, 

1 0.100000000E+01 
2 0.294524746E+Ol 
3 -0,370474957E+Ol 
4 0.164668560E + 02 
5 -0.111407057E+03 
6 0.933215908E+03 
7 -0,889355797E+04 
8 0,926672385E+05 
9 - 0.102028465E + 07 

10 O.l16396648E+08 
11 -O.l50803586E+09 
12 O.l74232427E+ 10 
13 -0.2436186188+ 11 
14 0.306394790E+ 12 
15 - 0.432396958E + 13 
16 0.592994893E+ 14 

Heat transfer 

d, 
- 

O.lOOOOOOOOE+01 
0,445792699E+Ol 
0,539527244E+Ol 
0,961257557E+Ol 

-0,397975081E+02 
0,335705186E+03 

-0.303887731E+O4 
0.297345384E + 05 

-0.293451594E+06 
0.297271786Ef07 

- 0.493052408E + 08 
0.149958878E + 09 

-0.914492188E+ 10 
0.998754352E+ 10 

-O.l28509069E+ 13 
0.834867382E+ 13 
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FIG. 5. Adverse case : the characteristics of mixed convection on a horizontal flat plate with constant wall 
temperature : f”({, 0), skin friction ; W(<, 0), heat transfer rate. 

equations. The realization of the lower branch solu- 
tion follows similar arguments as found in ref. [20]. 

4.2. Uniform heat Jlux case 
The results for skin friction and wall temperature 

are 

Y’(4,O) = i a,(* 0” 
n=ll 

(4ga) 

e(f,O) = ; b”(+E>“. (48b) 
“ZCI 

Coefficients a,, and 6, are given in Table 4. The Domb 
Sykes plots an/an_ 1 or &lb,_, against l/n are shown 
in Fig. 6. The extrapolation to l/n = 0 leads to an 

intercept of 50 and a slope of a = 1. The reciprocal 
of the intercept gives the radius of convergence 
[, = 0.02. 

To improve the convergence of series (48) for a 
favourable case the series is recast in terms of the 

Euler variable defined by equation (41) 

Wb) 
“=a 

Coefficients A, and B, are given in Table 4. Series 
(49a) and (49b) are hopefully convergent for Z + 1 
(t + co), provided there is no other singularity. The 
last partial sums of series (49) yield the value of skin 
friction, ~-‘i2_f”(~, 0) = 1.57159897 and wall tem- 
perature t “??(t, 0) = 1.65679325, whereas the pure 
free convection asymptotes studied in ref. [16] are 
f”(0) = 1.52664 and e(O) = 1.90551. 

The last partial sums of transformed series (49) 
overestimate the skin friction by 2.945% and under- 
estimate the temperature at the wall by 13.0% 
approximately. 

Table 4. Coefficients in the series for skin friction and wall temperature for mixed convection on a horizontal 
plate with uniform heat flux : a,, b,, low [ series (48) : A,, B., Eulerized series (49) 

n 

0 0,332057357E+OO 
1 0442016066E+01 
2 - 0440842429E + 02 
3 0.952863646E+03 
4 -0.268694008E+05 
5 0.874048752E+06 
6 -0.311838521E+08 
7 O.l18785028E+ 10 
8 -0.475750523E+ 11 
9 O.l98329148E+ 13 

Skin friction Wall temperature 

A” bn 

0.234800009E+01 
-0.548894928E+OO 
-O.l05636522E+OO 
-0.454670821E-01 
-0.258093958E-01 
-O.l68314969E-01 
-O.l19450592E-01 
-0.898301044E-02 
-0.706259901E-02 
-0.577103815E-02 

0,243978834E+Ol 
-0.551946354E+Ol 

0,795963325E+02 
-O.l76440796E+O4 

0.482950524E + 05 
-0.150434767E + 07 

0.5124306228+08 
-O.l86519388E+ 10 

0.715184452E+ 11 
-0.286090506E+ 13 

4 

0.127113148E+01 
0.154342363E + 00 
0.730717581E-01 
0.451503156E-01 
0,315747788E-01 
0.237432708E-01 
O.l87314748E-01 
O.l52914158E-01 
O.l28084067E-01 
O.l09479986E-01 
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FIG. 6. The DombSykes plots for skin friction and wall temperature series (56) for mixed convection on 
a horizontal plate with constant heat flux : 0, skin friction ; *, temperature. 

The convergence of series (49) can hopefully be 
further improved by completing series (49) from the 
analysis of the remainder. The DombSykes plots of 
the inverse ratios An/A,_, or B,/B,_ , against l/n on 
extrapolation to I/n = 0 gives the radius of con- 
vergence as unity and the slope as a = l/3. The 
method of subtraction of singularity leads to 

e-Wj-“(e,O) = Z-l/* A*1(l-Z)1’3+ 5 A,*Z” 
“=O 1 

t""O(t,O) =Z”6 BTl (1-Z)"3+ i B,*Z” 
n=cl 1 

(5Ob) 

Coefficients A,* and B,* are given in Table 5. The last 
partial sums of the transformed-completed series (50) 
at Z = 1 yield the value of skin friction, 
~-‘/*f”(~, 0) = 1.421552, and wall temperature, 
t’/“t@,O) = 1.941441, showing that the result pre- 
dicted from series (50) as l--r co underestimate the 

(504 skin friction by 6.9% and overestimate the tem- 

1.0 

r$= 
An-l 

Bn 
G-1 

0.2 0.4 0.8 

i/n 

0.8 

FIG. 7. The DombSykes plots of Eulerized series (58) for skin friction and temperature for mixed 
convection on a horizontal flat plate with constant heat flux. 
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Table 5. Coefficients in the series for skin friction and wall 
temperature for mixed convection on a horizontal plate with 

uniform heat flux : A,,, B,, completed Eulerized series (50) 

Skin friction Wall temperature 
n A,* B,* 

-1 0.427849286EfOO -0.811655245E+OO 
0 O.l92015080E+01 0,208278672E+Ol 
1 -0.406278495E+OO -0.116209393EfOO 
2 -0.580977117E-01 -O.l71121593E-01 
3 -O.l90566321E-01 -0.495186046E-02 
4 - 0.820242920E - 02 -O.l82667178E-02 
5 -0,391972143E-02 -0.751126231E-03 
6 -O.l90256719E-02 -0.319722850E-03 
7 -0.853374066E-03 -O.l30982270E-03 
8 -0.287902042E-03 -0.435916731E-04 

perature at the wall by 1.9%. The relatively large 
error in skin friction results may be due to the limited 
number of terms (ten terms) considered. The results 
for skin friction and temperature at the wall based on 
the completed-transformed series (50) are displayed 
in Figs. 8 and 9, respectively. The asymptotes for small 
and large z are also displayed in the respective figures. 
Figures 8 and 9 show that the large z asymptote for 
skin friction is reliable when p > 50 and for tem- 
perature when l > 1000. 

When the buoyancy opposes the main stream, the 
negative sign in series (48) is considered. In this case 
the nearest singularity is located on the positive real 
axis at <, = 0.02. 

6.0 _ 

FIG. 8. Favourable case : the comparison of skin friction for mixed convection on a horizontal flat plate 
with constant heat flux: C+E, completed transformed series (59a) ; A, asymptotes for small and large 

values of t. 

3 .o 

&,O) 

,.,: -L 

1.0 - \ 

0 I I I I 
--2 -I 

IO IO IO” 

; 
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FIG. 9. Favourable case : the comparison of wall temperature for mixed convection on a horizontal flat 
plate : C + E, completed transformed series (59b) ; A, asymptotes for small and large values oft. 
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FIG. 10. Adverse case : the characteristics of mixed convection on a horizontal flat plate with constant heat 
flux : F(& 0), skin friction at the wall ; t3(& 0), temperature at the wall. 

Inverting series (48) we obtain 

where f” = j”“(& 0), B = f@, 0) and the coefficients 
c’, and a,, are given in Table 6. 

The results from series (51) for skin friction and 
wall temperature are displayed against t in Fig. 10. 
The figure clearly shows the duality of solution and 
the associated turning point. The two series @la) 
and (5 I b) give slightly different values for the turning 
point which may be due to the rate of convergence of 
the series, i.e. t, = 0.0203. 

Table 6. Coefficients in the inverted series (51) for skin fric- 
tion and wall temperature for mixed convection on a horl- 

zontal plate with uniform heat flux 

n 
Skin friction 

c?l 
Wall temperature 

a” 

0.100000OOOE+01 O.lOOOQOOOOE+O1 
0.9973~809E+Ol O.l~210249E+O2 

-O.l66328409E+O2 0.962618465E+02 
0.2891173238+03 0.695509689E+03 

-0.634773406E+O4 O..520628603E+03 
0.165002917E+06 0.685086333E+05 

-0.4560905678+07 -O.l24509146E+07 
O.l43747688E+09 0.429982094E+ 08 

-0.460895244E+ IO -0.104170860E+ 10 

The present results at the turning point are 
&, = 0.02, j”(&O) = 0.18 for (r = 0.72 whereas the 
corresponding values from ref. [14] are t = 0.0246, 
S”(&O) = 0.1938 for Q = 1, and ? = 0.0155, 
f”(?,o> = 0.1515 f or CT = 0.5. Therefore, the results 
for the uniform heat flux case are largely in agreement 
with ref. 1141 in the neighbourhood of the turning 
point. 

Acknowledgement-The authors are thankful to the referee 
for some helpful comments. 

I. 

2. 

3. 

4. 

5. 

6. 

7. 

REFERENCES 

Y. Mori, Buoyancy effects in forced laminar convection 
flow over a horizontal flat plate, J. Heat Transfer 83, 
479482 (1961). 
E. M. Sparrow and W. J. Minkowycz, Buoyancy effects 
on horizontal boundary-layer flow and heat transfer, Znt. 
3. Heat Mass Trans_r 5,505~5 11 (1962). 
E. G. Hauptmann, Laminar bounda~-layer flows with 
small buoyancy effects, Znt. .Z. Heat Mass Trunssfer 8, 
289-295 (1965). 
L. G. Redekopp and A. F. Charwat, Role of buoyancy 
and the Boussinesq approximation in horizontal boun- 
dary layers, J. Hydronautics 6,34-39 (1972). 
C. A. Hieber, Mixed convection above a heated hori- 
zontal surface, Znt. J. Hea8 Muss Transjb 16, 769-785 
(1973). 
L. G. LeaI, Combined forced and free convection heat 
transfer from a horizontal tit plate, 2, Z. Angew. Math. 
Phys. 24,2@-42 (1973). 
0. G. Martynenko and Yu. A. Sokovishin, Heat Trans- 
fer in Mixed Convective FIaw (in Russian). Nauka i 
Tekhnika, Minsk (1975). 

8. T. S. Chen, E. M. Sparrow and A. Mucoglu, Mixed 



2516 T. HU~~AIN and N. AFZAL 

9 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

convection in boundary layer flow on a horizontal plate, 
J. Heat Transfer 99, 6671 (1977). 
A. Mucoglu and T. S. Chen, Mixed convection on a 
horizontal plate with uniform surface heat flux, Proc. 6th 
Int. Heat Transfer Co&, Vol. I. PP. 85-90. Hemisphere. 
Washington, DC (1978). _ _ 
X. A. Wang, An experimental study of mixed, forced 
and free convection heat transfer from a horizontal flat 
plate to air, J. Heat Transfer 104, 139-144 (1982). 
N. Ramachandran, B. E. Armaly and T. S. Chen, Mixed 
convection over a horizontal plate, J. Heat Transfer 105, 
42W32 (1983). 
A. Moutsoglou, T. S. Chen and K. C. Cheng, Vortex 
instability of mixed convection flow over a horizontal 
flat plate, J. Heat Transfer 103,257-261 (1981). 
N. K. Banthiya and N. Afzal, Mixed convection over a 
semi-infinite horizontal plate, Z. Angew. Math. Phys. 
31,646652 (1980). 
W. Schneider and M. G. Wasel, Breakdown of the 
boundary layer approximation for mixed convection 
above a horizontal plate, Int. J. Heat Mass Transfer 28, 
2307-2313 (1985). 
L. Pera and B. Gebhart, Natural convection boundary- 
layer flow over horizontal and slightly inclined surface, 
Int. J. Heat Mass Transfer 16, 1131-l 146 (1973). 
N. Afzal, Higher order effects in natural convection flow 
over a uniform flux horizontal surface, J. Thermo-Fluid 
Dynamics 19, 1777180 (1985). 
W. Schneider, A similarity solution for combined forced 
and free convection flow over a horizontal plate, Inr. J. 
Hear Mass Transfer 22, 1401,-1406 (1979). 

18. M. S. Raju, X. Q. Liu and C. K. Law, A formulation 
for combined forced and free convection past horizontal 
and vertical surfaces, Int. J. Heat Mass Transfer 21, 
221>2224 (1984). 

19. N. Afzal, Mixed convection in buoyant plumes. In Hund- 
book of Heat and Mass Transfer Operations (Edited by 
N. P. Cheremissinoff), Chap..37. Gulf, Texas.(1985). 

20. N. Afzal and T. Hussain. Mixed convection over hori- 
zontal plate, J. Heut Transfer 66, 24G241 (1984). 

21. I. R. de Hoog, B. Laminger and R. Weiss, A numerical 
study of similarity solutions for combined forced and 
free convection, Acta Mechanica 51, 139-149 (1984). 

22. C. Domb and M. F. Sykes, On the susceptibility of a 
ferromagnetic above the Curie point, Proc. R. Sot. A240, 
214228 (1957). 

23. Z. Rotem and L. Classen, Natural convection above 
unconfined horizontal surfaces, J. Fluid Mech. 39, 1733 
192 (1969). 

24. M. Van Dyke, Analysis and improvement of per- 
turbation series, Q. J. Mech. Appl. Math. 27, 423450 
(1974). 

25. I. M. Ryshik and I. S. Gradstein, Tables of Series, 
Products and Integrals. Veb Deutscher Verlag Der Wis- 
senschaften, Berlin (1957). 

26. T. Hussain, Mixed convection on horizontal surfaces, 
Ph.D. thesis, Aligarh Muslim University, Aligarh, India 
(1985). 

27. R. Narasimha and N. Afzal, Laminar boundary on a 
flat plate at low Prandtl number, Inr. J. Heat Mass 
Transfer 14,279-292 (1971). 

CONVECTION MIXTE A COUCHE LIMITE POUR UN ECOULEMENT UNIFORME SUR 
UN PLAN HORIZONTAL 

R&sum&La convection mixte a couche limite sur une plaque horizontale pour un flux thermique ou une 
temperature uniforme est itudite numiriquement en utilisant une sirie de perturbation. Les 17 premiers 
termes pour le cas de temperature parietale uniforme et les 10 premiers termes pour le cas du flux uniforme 
sont calcults pour un nombre de Prandtl c = 0,72. Le developpement direct est trait& par la transformte 
d’Euler et d’autres techniques. Les resultats sont present&s pour la convection naturelle aidant ou con- 
trariant l’ecoulement principal. Pour la temperature par&ale, l’erreur maximale est 5,983% pour le 
frottement et 1,072% pour le transfert de chaleur. Pour le flux thermique uniforme, l’erreur maximale est 

6,9% pour le frottement et 1,9% pour la temperature de paroi. 

GRENZSCHICHTSTRBMUNG IN MISCH-KONVEKTION AN EINER 
WAAGERECHTEN PLATTE IN EINER GLEICHFORMIGEN HAUPTSTROMUNG 

Zusammenfassung-Die Grenzschichtstriimung in Mischkonvektion an einer waagerechten Platte wird 
fur die Falle konstanter Wandtemperatur/konstanter Warmestromdichte mit Hilfe eines erweiterten 
Storungsansatzes untersucht. Fur eine Prandtl-Zahl (r = 0,72 werden bei konstanter Wandtemperatur die 
ersten 17 Terme, bei konstanter Wlrmestromdichte die ersten 10 Terme berechnet. Die direkte Entwicklung 
wird mit Hilfe der Euler-Transformation und anderer Techniken transformiert. Ergebnisse fiir gleich- und 
gegengerichteten Auftrieb (beztiglich der Hauptstriimung) werden vorgestellt. Die Genauigkeit ist im 
gesamten Stromungsgebiet zweistellig. Fur konstante Wandtemperatur betrlgt der maximale Fehler bei 
der Berechnung der Wand-Schubspannung 5,983%, beim Warmeiibergang 1,072% ; fur konstante Wlrme- 

stromdichte 6,9% bzw. 1,9%. 

CMEIBAHHOKOHBEKTHBHbIn HOI-PAHHsHbIR CJIOR HA I-OPH30HTAJIbHOti 
HJIACTHHE B OAHOPOAHOM IIOTOKE 

AnuoTaqnn-CMemaHHoKoHneKT~aH~fi norpaHHyHblii cnoii Ha ropH30HTanbnofi nnacrnHe AAH o~no- 
pOAHbIX TeMnepaTypb, CTeHKH H T‘2”JlOBO~O nOTOKa HCCJEA,‘eTCK pa3nOXeHHeM B p5Iilb, ,I0 BO3MyIIle- 

HHKM C HCnOJIb30BaHHeM 3BM. nepBbIe 17 WIeHOB A.“,, CAy’IaK OAHOpOAHOii TeMnepaTypb4 CTeHKH W 

nepsbre 10 WIeHOBJUUIcny'Ian OmiOpOnHOrOTenJIOBOrO noToKapaccYHTbIBaloTCKA.IInYEicJIanpaHATJrP 
CT= 0.72. npnMoe pa3noxeme B pn~ npoeomiTcn c nOMOmbK) npeo6pa3oBaHnn 3&JIepa H npyraMH 

cnoco6arrra. ,-@ACTaB,IeHbI p3yJIbTaTbI Qnn cnyTHor0 B npoTHBonono*Horo mnparsnemifi BT~~HV- 

"Or0 ii OCHOBHOrO Te'ieHHSLk3yJlbTaTbl AaHbIC TO'fHOCTbKl AOAByX 3Ha'IaUiX I&p BO SC&i o6nacru 
n3hsenenna HanpaeneHHoii BAonb noToKa KoopAHziaTbr. B cnysae 0A~opoAHoii TebfnepaTypar creHKU 
MaKcHManbHas norpemHocTb CocTaBnnna 5.983% Ann noBepxHocTHoro rpemin a 1.072% Anr Bena- 

'IHHbl TeIIJIOOTAa'IW. B CJly’rae O~OpOJlHOrO TCMOBOrO nOTOKa MaKCAMaJIbHaK nOr~IUHOCTb paBHa 

6.9% Qnn noaepxeocruoro T~~HHK w 1.9% Ann TebmepaTypbx creHKEi. 


